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ABSTRACT 

Let the unperturbed operator be the helium-Schrodinger operator and let the 
perturbation be the homogeneous-electric-field operator. It is shown that the 
first two formal perturbation equations corresponding to the smallest un- 
perturbed eigenvalue do admit solutions in the appropriate Hilbert space. 
According to general considerations this implies that for this perturbation 
problem, the phenomenon of spectral concentration holds. 

1. Introduction. In his third communication on the perturbation of spectra 
Schrodinger [1] computed the energy levels of the hydrogen atom in a weak 
electric field. His results coincided with the experiments with great accuracy. 
Then Oppenheimer pointed out [2] that according to physical intuition the entities 
computed by Schrodinger cannot be point-eigenvalues of the corresponding 
Schrodinger operator. Later this fact was rigorously established by Titchmarsh 
[6]. 

It was observed by Riddell [15] [14.k] and elsewhere [12] that the phenomenon 
of spectral concentration holds for a large class of abstract operators, including 
the family of Schrodinger operators corresponding to hydrogen in an electric 
held. 

It is the purpose of this paper to show that the phenomenon of spectral con- 
centration also holds, near the binding enery of the helium Schrodinger operator. 
According to a verbal communication of Galindo, the spectra of the Schrodinger 
operators corresponding to helium in an electric field are unbounded from 
below. Aside from this there is little known about these spectra. It is possible, 
although not likely that near the helium binding energy these spectra consist of 
point-eigenvalues. Then our theorem, to be stated, would be vacuous. Even in 
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this case, however, it seems easier to establish the concentration phenomenon 
than to determine these spectra exactly. 

Specifically in §2 we summarize some known facts about the helium Schrodinger 
operator. Then we apply the abstract concentration theorem of [12] to the family 
of Schrodinger operators corresponding to helium in a weak homogeneous 
electric field. Here, of course, the parameter of the family is the strength of the 
electric field, and we consider the spectra near the helium binding energy. This 
application is carried out in Theorem 2.1. The key assumption of this theorem 
is that the first two formal perturbation equations do admit solutions. This as- 
sumption is verified in the two sections that follow. 

In §3 we consider an abstract perturbation problem and in Lemma 3.1 we 
formulate conditions which ensure that the formal perturbation equations 
do admit solutions. These conditions are as one expects them to be and are for- 
mulated for convenience. In Lemma 3.2 we introduce further conditions, which 
imply the main ones of Lemma 3.1. 

In §4 we return to the key assumption of Theorem 2.1. In Theorem 4.1 we 
isolate a property of our perturbation problem. This property is important for us, 
inasmuch as it will allow us to verify the key assumption of Theorem 2.1. We 
derive Theorem 4.1 from four lemmas. The statement of Lemma 4.1 holds for a 
class of elliptic partial differential operators although we formulate it for the 
Laplacian only. The proof of this lemma is based on the usual technique of mol- 
lifying operators [10]. In Lemma 4.2 we observe that a certain ordinary differen- 
tial operator is accretive and this is our basic lemma. Its assumptions are rather 
restrictive and this is the reason why we can establish only second order concent- 
ration and only near the helium binding energy. For heavier atoms additional 
point-eigenvalues can be included, however, we shall not be concerned with this 
fact. Lemmas 4.3 and 4.4 are again general and hold for any isolated point- 
eigenvalue of the helium-Schrodinger operator. These four lemmas together 
establish Theorem 4.1. We apply Theorem 4.1 in conjuction with the abstract 
Lemmas 3.1 and 3.2 to our perturbation problem. Lemma 3.2 allows us, so to 
speak, to isolate the effect of each of the electron-nucleus potentials in the ground 
states of the helium-Schrodinger operator. This intuitive idea is behind the two 
rigorous applications of Lemma 3.2 at the end of Section 4. 

It is a pleasure to thank Professor Galindo for valuable conversations and for 
introducing the author to the physics literature of the Stark effect. Thanks are also 
due to the referee for his constructive criticism. 

2. Formulation of the Concentration Theorem. For the unperturbed operator 
we take the helium-Schrodinger operator. To describe it in more specific terms let 
~oo(g3) denote the class of infinitely differentiable functions with bounded support 
in 83, the real Euclidean space of dimension 3. The Schrodinger operator in 
atomic units [5.e], corresponding to the helium ion He +, is given on ~o0(6~3) by 
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(2.1) (ILIe+)f = - 2 A f - 2 M ( : ) f ,  f ~  ~oo(d'3). 

Here and in the following we use a dot to emphasize that a given operator is 
defined on ~oo(~3). In Equation (2.1) A denotes the Laplacian and M(1/r) denotes 
the operator of multiplication by the function 

~ ( x ) =  1 P'I' x e3. 

According to Kato [3], [14.i] the operator I)Ie + is essentially self-adjoint on 
~oo(~3) and the domain of its closure equals the domain of the closure ofz~. That is 

~D(He +) = ~)(A). 

Next define the function q on e 6 by 

(2.2) q(x) = ( ( x 6  - x3) 2 + (xs  - x2)  2 + ( x ,  - x 0 2 )  -1 /2  

and let M(q) o n  ~m(~6) be the operator of multiplication by this function. Using 
the usual notations for the Kroneker product of operators [18], the helium- 
Schrodinger operator in atomic units is given on ~oo(g6) by [5.b] 

(2.3) tie = He + ® I + 1 @ fie + + M(q), 

where I denotes the identity operator on ;E2(¢a). Actually, it would be sufficient 
to define this operator on 

but we shall not be concerned with this fact. Remembering definition (2.1) we see 
that 

iL ie=_  l [ A ® i + l ® z ~ ] +  [ - 2 M  ( ! ) ® I - 2 1 ®  M ( ! ) ] +  M(q). 

According to Kato 1-3] [14.1] this operator is essentially selfadjoint on 6oo(86) and 
the domain of its closure equals the domain of the Laplacian. More specifically for 
the domains of the closures of these operators we have the following inclusions, 

(2.4) :D(He) = ~)(a ® I + X ® a) 

(2.5)(I)(2) 
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(2.6) ~(He) = ~ ( M ( q ) ) .  

For brevity, we shall set 

and 

Israel J. Math., 

A O'2)= A ® I +  I ® A  

Note that superscripts correspond to the decomposition 

,~(e6)  = ,~2(,g~) ® ~(~'3).  

For the perturbation V we take the operator corresponding to a homogeneous 
electric field. More specifically it is the closure of the operator 17 given by 

(2.7) lP f ( x )  --  x 3 -I" x 6 ) f ( x ) ,  x ~ ~6,  f ~ ¢~(g6). 

We define the family of perturbed operators on ~ ( 8 6 )  by setting 

(2.8) /:/(~) = I~Ie + 817. 

More specifically, we denote by H(e) an arbitrary self-adjoint extension of this 
operator. Since the operators /:/(~) commute with conjugation, the existence of 
such an extension is ensured by a theorem of yon Neumann [8]. We do not know 
whether such an extension is unique or not. The corresponding question for the 
hydrogen Schrodinger operator was treated by Ikebe and Kato [9]. They showed 
that in this case the extension is unique. Note that at least formally, the operator 
H(~) is the Schrodinger operator corresponding to the helium atom in a homo- 
geneous electric field of intensity ~ [5.d]. 

Next let H(e) be a given family of self-adjoint operators acting in an abstract 
Hilbert space. For a given Borel subset &~ of the real line let E(~,&~) denote the 
spectral projector of H(8) over f¢,. Following a terminology used elsewhere [12], 
we shall say that near a given point 20, the spectrum of the family of operators H(e) 
is concentrated to order p, if there is a family of sets &,, such that 

E(~, ~ )  ~ E(0, {2o} ) as 8 --* O, 

and 
1 ,1 = o( p) at  8 = 0 ,  

Here, the left member, denotes the Lebesgue measure of&, and convergence means 
strong convergence. 

After these preparations we return to the family of Schrodinger operators in (2.8). 
As mentioned in the introduction, in this paper we show that near the binding 
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energy of the helium-Schrodinger operator, the spectrum of these operators is 
concentrated in this technical sense. This is the statement of the theorem that 
follows. In it for a given operator T we denote by a(T) its spectrum. 

THEOREM 2.1. Let the helium Schrodinger operator He be defined by equation 
(2.3) and let the family of operators H(e) be defined by equation (2.8). Set, 

(2.9) 2 b = infa(He). 

Then near the point 2 b the spectra of the family of operators H(e) is concentrated 
to order two. 

According to a theorem obtained by Riddell [,15] [,14.k] and elsewhere [12], 
the phenomenon of spectral concentration obtains under general circumstances. 
To describe these circumstances, following Kato [,14.c], we say that a given subset 

of ~)(T), is a core of the given operator T if the closure of its restriction to 
equals T. In particular, if T is essentially self-adjoint on ~ then ~ is a core of T., 
Using this notion the assumptions of the abstract spectral concentration theorem 
adapted to our operators, can be stated as follows: 

(2.10) 2 b is an isolated point-eigenvalue of He of finite m-multiplicity, 

(2.11) as ~ converges to zero, the operators H(e) converge strongly to He on a set 
which is a core of the unperturbed operator He, 

(2.12) the first two formal perturbation equations corresponding to the family 
H(e) at the point 2b admit m-linearly independent solutions. 

Thus to establish Theorem 2.1 it suffices to establish these three conditions. 
To verify condition (2.10) we need a theorem of Zhiclin [7] and Jorgens [-20]. 

This says that the essential spectrum of the helium Schrodinger operator is given by 

ae(He ) = [infa (He+), oo). 

As is well known [5.a], 

(2.13) inftr(He +) = - 2. 

It is also known [5.c] that the value - (2-1-6-) is an upper bound of 2b. Hence 

( .14 
(2.14) 2 b < -  2 - ] ~  = ~-~] < ~-~ < - 2 - ~ - -  

and we see that 2b is not in the essential spectrum of the operator He. That is to 
say, condition (2.10) holds for the value 2 b. 

To verify condition (2.11) recall that according to Kato the operator He is 
essentially self-adjoint on ~oo(oa6). It is clear from definition (2.8) that for each 
vector f in this set, 
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lira H(8)f  = Hef. 

In other words, condition (2.11) holds for this family of operators. 
It remains to verify condition (2.12), which we shall do in the two sections that 

follow. 

3. A sufficient condition for the solvability of the perturbation equations. Let H 
and V be possibly unbounded symmetric operators acting in some abstract Hilbert 
space .~ and assume that the intersection of their domains is dense. Define the 
family of operators H(e) by 

(3.1) H(e) = H + ~ V on ~ (H)  ~ ~(V) .  

Suppose that 4o is an isolated point eigenvalue of H and formally set 

(3.2) 

and 

(3.3) 

GO 

2(~.) '~' '~. 2j8 J 
J=O 

oo 

~ Y f j d  
j=O 

and 

(3.4) H(e)f(e) ,.,, 2(8)f(e). 

Carrying out the multiplication of the formal power series in this relation and 
equating the coefficients of the like powers of e, we obtain the following set of 
recursive equations, 

(3.5)o ( n  - 2o)fo = 0 

(3.5). (H - 2o)f. = ~, 2j f ._ j  - V f . -1 ,  n = 1,2, .... 
j = l  

This set of equations is called the set of formal perturbation equations corres- 
ponding to the family H(e) at the point 20. Note that in general f(e) is not an 
eigenvector and 2(~) is not eigenvalue of H(s), in fact such formal power series 
need not exist. In the lemma that follows we formulate a sufficient condition for 
the solvability of these equations. These conditions were observed elsewhere [12] 
and they imply the recent ones of Riddell [15]. 

LEMMA 3.1. Let 4 o be an isolated point eigenvalue of H of finite multiplicity 
and let E{2o} denote the eigen-projector over 2 o. Suppose that there is a sequence 

of  nested linear sets go  c 61 c ... c ~ ,  = ~ ,  such that 

(3.6) E{2o}~ = go 
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and for k = 0 , 1 , . . . , n -  1 

(3.7)k V~ k C ~k+l' 

and for k = 0 ,1 , . . . ,n  

(3.8)k (20 -- H + E{2o} )- t ~k = ~k" 

Then the first n formal perturbation equations corresponding to the family (3.1) 
at 20, that is equations (3.5)o through (3.5),, do admit solutions. Furthermore, 
the number of linearly independent solutions equals dimE{2o}.~. 

In case the perturbation V is bounded, we set 

~ k = ~ ,  k = 0 ,1 ,2 , . . . .  

Then clearly assumptions (3.6), (3.7)~ and (3.8)~ hold with reference to this sequence 
of sets. Even in this case the statement of the lemma is not evident, and for a proof 
we refer to the book of Friedrichs [-11]. Next consider the case of an unbounded 
perturbation E Suppose that for some value of k - 1 < n - 1 the sequence of 
numbers ;to, 21, '" ,  2k-X and the sequence of vectors fo,'",fk-X, satisfy equations 
(3.5)o through (3.5)k_ 1. Supose further that 

f j e  ~ j  = ~3(V) j = 0 , 1 , . . . , k -  1 

and that for a given ;tk equation (3.5)k does admit solutions. Then we see from 
assumptions (3.6), (3.7)k_ X and (3.8)k that these solutions are given by 

--(2 0 --Hq-E{;to})-I ( ~  ;t j fk-j-  Vfk-1 I "q- gk, (3.9)k A \ j=l / 

where gk is an arbitrary vector in E{20}~. At the same time we see that, 

A =  ~k. 
I f  also k < n - 1, then we see from assumption (3.7)k that fk is in ~(V). This fact 
allows us to replace k by k + 1 in formula (3.9)~, provided that the vectors go,'" gk, 
and the numbers ;to, ... ;tk are chosen appropriately. Now the problem of this 
appropriate choice is the same for bounded and unbounded perturbations. For 
brevity we do not repeat this argument [-11] and consider the proof of Lemma 3.1 
complete. 

The assumptions of  Lemma 3.1 are rather general and it is difficult to verify 
them for specific operators. In the lemma that follows we formulate assumptions, 
which are adapted to our perturbation problem, and which imply the main ones 
of  Lemma 3.1. In it ~3(~) denotes the space of bounded operators defined on all 
o f ~  and p(T) denotes the resolvent set of  a given operator T. 

LEMMA 3.2. Let the operators Ao,l be self-adjoint on the given domains 
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~3(Ao,t) in ~ and let ;to e p(Ao) be an isolated eigenvalue of A o + A 1 of finite 
multiplicity, with eigenprojector E{2o}. Suppose that 

(3.1o) Al(;to- ~o) -1 ~ ~(~). 

Suppose further that a sequence of sets ~o =~, ~ l , ' "~h  is given, such that for 
each integer l < n - 1 ,  

(3.11), 

and for each integer l < n 

(3.12), 

Then the sequence of sets 

(3.13)k ~k = 

A ~ ( ~ C ~ ( A , ) )  = ~Sz+ , 

( ; to-  AoY 1 ~ i  c ~8~. 

n - k  

~3t, k = O, 1, . . .  n, 
1=0 

satisfies assumptions (3.6) and (3.8)k with reference to the operator H = A o + A1. 

To verify assumption (3.6) let h be an arbitrary vector in the range of the eigen- 
projector E{2o}, i.e. set 

(3.14) (Ao + A1)h = 2oh. 

We see from assumption (3.10) that 

~(Ao) = ~(A,),  

and hence 

(3.15) h e ~3(A1). 

Insertion of this fact in equation (3.14) yields 

(3.16) h = (;t o - Ao) -1Ath.  

Assumption (3.11)o together with relation (3.15) shows that 

A t h e ~ t .  

Insertion of this inclusion and of assumption (3.12)~ in equation (3.16) yields 

h E ~ t .  

If 2 < n, this argument can be repeated and we see that h is also in ~2. Similarly, 
we see that 

he~ l  ~""  ~ n ,  

and remembering definition (3.13)o, we obtain the validity of assumption (3.6). 
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To verify assumption (3.8) recall that by assumption the projector E{2o} is 
of finite rank and hence defined on all of 9 .  This yields 

~(Ao + Ax - E{;to}) = ~(Ao + Ax), 

and in view of assumption (3.10) we have 

(3.17) ~)(A o + A~ - E{;to}) = ~)(Ao). 

Since A o + A~ is symmetric on ~(Ao), thre assumption that ;t o is an isolated 
eigenvalue implies ]-14.1] that 

(3.18) (;to - A o - Ax + E{;to}) -~ e !~(.~). 

According to general considerations [13] relations (3.17) and (3.18) imply that 

[1 -- (A t + E{;to}) (;t o - Ao) - l ]  - t  ~ ( ~ )  

and 

(3.19) (2 o - A  o - A x  + E{;to}) - a = (~,o -Ao)  -1 [1 - ( A  t + E{;to})(;t o -Ao)  -~] -1. 

We maintain that for each k == n, 

(3.20)k [1 - (A t + E{;to})(2 o -- Ao)- '  ] - ' ~ k  = ~k" 

TO verify this let f be an arbitrary vector in ~k, that is let 

f e~3o  N~31N. . .  t ~ , _ k ,  

and set 

(3.21) [1 - (A a + E{;to})(;t o - Ao)-x] - , f  = g. 

Then clearly 

(3.22) g = f + (Aa + E{;to})(;t o - Ao)-*g. 
According to the already established assumption (3.6) for each vector g in 

E{;to}(;to - Ao)- 1 g e Co = ~k" 

Assumptions (3.11)o and (3.22)t show that 

21(~,o _ Ao ) - i g o r 1 .  

Inserting these two inclusions in equation (3.22) we obtain that g is in ~ .  If 
2 < n - k then f is in !82 and a repetition of this argument shows that also 
g is in ~3z. Similarly, we see that 

Remembering definitions (3.21) and (3.13)k this establishes the validity of inclusion 
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(3.20)k. Insertion of this inclusion in equation (3.19) yields the validity of assump- 
tion (3.8)k of Lemma 3.1, if we use assumption (3.12)b of Lemma 3.2. Since this 
holds for each k < n the proof of Lemma 3.2 is complete. 

In conclusion, let us remark that for specific perturbation problems symmetry 
arguments give some information on the numerical values of these constants. 
We shall not be concerned with this fact, merely refer to the book of Wigner [16]. 

4. Application of Lemmas 3.1 and 3.2 to the Helium Schrodinger Operator. 
We have seen in §2 that in order to establish Theorem 2.1 it suffices to estab- 
lish condition (2.12), which we shall do in this section. 

We start by defining two different splittings of the helium Schrodinger operator 
and applying the abstract Lemma 3.2 to each of these two splittings. To describe 
these splittings we introduce two operators by setting 

(4.1) (1) ~¢o)= H e - M O ) ( ~ )  = 

(4.1)(2) /if(z) = He _ M(2) (_lr) - 

1 
- 2  A @ I + I @ He + + M(q) 

1 
He + ® I -  ~ I ® A  + M(q) 

on ~ ( g 6 )  and define F O)'(2) to be their closures. It is also convenient to intro- 
duce two more operators, by setting 

1 

and 

(4.3)3,6 M3,6(w)f(x)  = w(x3,6)f(x),  x ~ ~6, f ~ ~ ( ~ 6 ) -  

#2 
2 < infa(He +) 

2 

9:~(M3,6 (1~(,~ _ F(1),(2))M3,6(w~)) _- .~2(oP6)" 

(4.4)] 

Then 

(4.5)(I),(2) 

Note that the subscripts refer to the decomposition, 

We shall make essential use of a property of these operators, which is formulated 
in the theorem that follows. In it for a given operator T we denote by 9~(T) its 
range. 

THEOREM 4.1. Let the operators F (1)'(2) be defined by equations (4.1) (1)'(2). 
Suppose that the real numbers 2 and It are such that # is positive and 
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The proof of this theorem is the main part of this section. We shall derive it 
from the four lemmas that follow. 

LEMMA 4.1. Let the operators F O)'(2) be defined by equations (4.1) (1)'(2) 

and let the operators Ms,6(.w ~) be defined by equations (4.3)3, 6. Then for each 
positive number la, the set ~oo(¢6) is a core Jot the operators 

M / 1 ~aF(1),(2) , .  , .~ iv,3,  w, 

For brevity we shall establish Lemma 4.1 for one of the operators only. 
The proof will employ the technique of mollifying operators. In fact, we start 
the proof with a general proposition concerning such operators. In it, let j be 
a given non-negative function in ~ ( ¢ 6 )  such that 

j ( u ) d u  = 1, 

and define the sequence of integral operators Jn by the kernel 

(4,6)n Jn(x, y) = n6j(n(x - y)). 

PROPOSITION 4.1. For each integer n let the operator .In be defined by the 
kernel in (4.6)~ and let the function w be defined by equation (4.2). Then for each 
positive la, 

(4.7). M3 (1 )~A  ( L2)j.M a(w~') ~ ~(.~2(~6)) 

and for each vector g in ~ (M3(1)~),  

To verify conclusion (4.7). first note that 

(4.9). Ma(w~)~o~(¢6) =~o~ (~6) and J.~oo(¢6) ~ ~o~(¢6). 

Hence the operator in (4.7)n is defined on ~ ( ¢ 6 ) .  We maintain that its restriction 
to this set is bounded. That is 

LI < oo. 

For, an elementary application of the Green's formula shows that the kerne of 
this operator is given by 

n2(Aj(n(x -~ w~(ya) 
- y ) )  w - - ~ a  ) • 
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Since by asstimption the function j is in ~oo(86) so is the function (Aj). Hence for 
frozen n, the support of (Aj) (n(x - y)) is in some neighborhood of the diagonal 
x = y of 86 x 86. Specifically there is a positive number 7(n) such that for every 
x, y in 86 x 86, 

[ x -- y[ > v(n) implies (Aj) (n(x - y)) = O. 

The triangle inequality shows that 

Ix31 < [ x - y  I + [ya[, hence xg =< 2 l x -  y[2 + 2y2. 

This yields 

1 +x] 
1 + y J  
- - < 2 [ x -  ylZ + 2, 

and remembering definition (4.2) we see that there is a constant 0(1) such that for 
every x, y in 86 x 86, 

[ x - Y[ < ~(n) implies w~(y2) w~'(xa) = 0(1). 

These two implications together show that this constant is such that 

(4.11). (A j ) (n ( x - y ) )  - -  w~(y3) 
w"(x3) 

-- 0(1) (Aj) I (n(x - y)) [. 

Hence 

f w#(ya) f w"(y2) sups, [(A j) (n(x-y)) ~ [dy + supy [(A j) (n(x-y)) ~ dx < oo. 

According to a result of Holmgren [14.a] this relation implies the validity (4.10).,. 
if we remember that the kernel of the operator of (4.10). is n 2 times the left member 
of(4.11).. 

Note that for # =0, these arguments give the arguments of Friedrichs [10] 
showing that 

(4"10).,o I1( 1'2) J,)[l < oo, 

It is a general operator-theoretic fact that the closure of the product of two opera- 
tors equals the product of the closures provided that the closure of the second 
factor is bounded and everywhere defined. Insertion of this fact in (4.10).,o yields 

A(1'%'. ~ ~(~z(e6)) and a(l'2)j.M3(w ") ~ ~:(~2(86)). 

That is, the closure of the second factor in (4.10).,, is bounded and everywhere 
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defined. Insertion of this fact anct of the previous general operator-theoretic fact 
in (4.10).,, yields the validity of conclusion (4.17),. 

To verify conclusion (4.8) we need a sharper, but well known [10] version of 
relation (4.9),. Specifically we need that for each function g in @~(6O6) the union 
of the supports of the functions 

J,Ma(w~)g, n= 1,2,..., 

is a bounded subset of 6°6. Since J .  converges strongly to the identity operator on 
~2(6O6), we obtain 

lim Ma( l ~Ma(w~' )g= g, g~ ~ ( g 6 ) -  
.=~  \w / 

A repetition of the arguments leading to conclusion (4.17). shows that 

That is to say, this sequence of operators is uniformly bounded and on a dense 
subset and it converges strongly to the identity operator. Therefore for each vector 

f in ~2(6O6), 

lira M a --~ J.Ma(w")f= f. 

Setting 

g = Ma(w ~)f, 

in this relation we obtain the validity of conclusion (4.8). 
In the proof of Lemma 4.1 we shall also need some information on the com- 

mutator of A (1'2) and M a This commutator is defined by 

[A ~1'~) M / 1 ~ ]  1 " _  M~ A~"~) ¢~(6O6), L , ~ - ~ ]  ] = ~ ,2 )Ma w on 

and by closure elsewhere. The existence of this closure is ensured by the anti- 
symmetric character of this commutator. To describe this commutator let D a be 
the ~o(6o6)-closure of the operator 

O x ,  Day(x ) = ~xaf ( ) x ~ 6O6, f e ~(6O6)- 

Similarly, let D ( 1 ) ~  denote the derivative of the function ( l f .  

PROPOSITION 4.2. Suppose that the vector h is such that 
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(4"12)I' he~)(A(l '2) ) fS~ M3 w and A(I'2)hE~) M a . 

Then h is in the domain of the ~oo(~6) closure of the operator Ma (D(1)~) D3, 
that is 

(4.13)~ 

Furthermore 

1 /l 

(4.14)~ [A°'2),Ma(1)U[h= Ma(D (1)~)D3h + M 3 ( D 2 ( l f ) h .  

To verify conclusion (4.13)~ we first maintain that for each real v and function 
h in ~oo(~6), 

6 / / l \ , D , h , D i h ) + ( M a ( D ( l f ) h ,  Dah) + ( M a ( l f  h, Ah)=O" (4.15)v E { M 3 | - - /  
i=1\ \ w /  

For, the product rule of differentiation yields 

O (1 + x~)~h(x) Oh(x) O(1 + x2) ~ t~h(x) 
Ox--~ -~  -- -(3~ .h(x) 

+ (1 + xZa)" Oh(x) 2 + (1 + x])" h(x) 02h(x) 
Oxi ~ " 

Since the left member is a partial derivative of a function in ~ (d '6 ) ,  integrating 
with respect to dx = dx 1 ... dx 6 and summing over i = 1, ... 6, we obtain the 
validity of  relation (4.15)r 

Next we derive conclusion (4.13)~ from relation (4.15)v According to the con- 
siderations of Friedrichs [10], (4.12)t implies the existence of a sequence of  vectors 
hn in ~ ( 8 6 ) ,  such that 

lim h. = h, 
nmoO 

and 

We see from definition (4.2) that 

are Cauchy sequences. 

(o (÷)) M3 h < M3 ~- h 

and clearly 
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2 II D3h II --< 2 II h II ~'2 II Ah II ~,2__< II h 11 + II Ah !l" 

Hence 

(Dah,} and {M3(D(1)) h, } are also Cauchy sequences. 

Insertion of these facts in relation (4.15)~ shows that each term of the sum is a 
Cauchy sequence. Clearly 

(Ma D a ( h .  - hm), D a ( h .  - hra)) = M a  D 3 ( h n - h m )  , 

and according to definition (4.2) 

/ 1 \1/2 

Combining these facts we arrive at the validity of conclusion (4.13)~. An adap- 
tation of these arguments that we shall not carry out, yields the validity of con- 
clusion (4.13),. 

To verify conclusion (4.14)z first note that according to elementary algebra it 
holds for h in ~ ( ~ 6 ) .  In the general case consider the previously introduced 
sequence in ~ ( g 6 ) ,  {h,}. Since 

1 h = 

we see that for this sequence the right member of (4.14)~ is a Cauchy sequence. 
Remembering that we defined the domain of the commutator by closure, this 
yields the validity of conclusion (4.14)t. Similarly we arrive at conclusion (4.14),. 
This completes the proof of Proposition 4.2. 

Having established these two propositions we return to the proof of Lemma 4.1 
The key fact of this proof is the inclusion 

(4.16) ~3(Ma(lfF(1)M3(w~)) ~ ~3(A(1'2)), 

that we verify presently. Accordingly assume that 

(4.17) 

and we shall show that 

(4.18) 

3\w ] ] 

f + ~)(A 1,2) ). 

To verify this relation rccall conclusion (4.8) of Proposition4.1. It allows us to 
dcfine the the scquencc of vcctors 
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(4.19). f.  = Ma J.M3(w )~f. 

At the same time it shows that 

Since the operator A (1'2) 

each n 

(4.21). 

and 

Israel J. Math., 

l i m  f .  = f .  

is closed, relation (4.20) is implied by the fact that for 

f .  e ~ ( d  ~'2) ) 

(4.22) {A(l'2)f,} is a Cauchy sequence. 

To verify relation (4.21) recall conclusion (4.7), of Proposition 4.1. This shows 
that for each n, the vector 

h n = J.M3(w~)f 

satisfies assumption (4.12)~ of Proposition 4.2. Hence Propositions 4.1 and 4.2 
allow us to define the sequence of vectors 

/ I~A(I'2)J M (w~)f (4.19)* f * =  Ma~w]  , a 

We claim that for every vector h in ~(d'6),  

(4.23) (A(l'2)h,f.) = (h,j*). 

For, we see from definition (4.19). that 

(A (1'2) h, f,) = (Ma(w~')J, Ma A°'Z)h, f),  

and from definition (4.19)* that 

Since 

- M 1 ~ " ~oo(oF6) ' AO,2,M 3 ( 1 ) "  [ A(1'2,, a ( w )  ] = M a ( 1 )  A(l'2)°n 

these two equations establish the validity of relation (4.23). In other words we have 
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shown that the vector f ,  is in the domain of the adjoint of A (l'Z)in ~o(OX~6). Since 
A (1'2) is essentially self-adjoint on this set [14.hi we obtain the validity of relation 
(4.21). 

To verify relation (4.22) insert the already established relation (4.21)n in defini- 
tion (4.19)n. This yieds 

(4.24)~ A(l'Z)fn--M3(1) A(l'z)JnM3(wP)f+ [A(I'2),M 3 ( w )  ] J'Ma(wl')f" 

Definition (4.1) 1 together with relations (2.4) and (2.5) 1 shows that assumption 
(4.19) implies 

(4.25) M3(w~')f e•(A it'2)) and A (1'2) M3(wt')f ~ ~(M3 ( 1 ) "  

Insertion of this fact in conclusion (4.8) of Proposition 4.1 yields 

(4.26) lim M 3 ( l l  J' ( 1 )  ~' • ,,=oo \ w/ A(l'2)jnM3(wJ')f= M3 A°'2)M3(w~')f, 

if we remember that A (1'2) commutes with J,. According to (4.25) the vector 
M3(w~')f satisfies assumption (4.12),. Hence according to conclusion (4.13)~ 
of Proposition 4.2 

This fact together with conclusion (4.8) of Proposition 4.1 implies that 

1 ~ 1 ~ 

if we remember that 1)3 and J ,  commute. Similarly, we see that 

1 " 

Insertion of these two relations in conclusion (4.14), shows that 

[A(1'2), M3 (1) t ' "  ] J, M3(w~)f 

is a Cauchy sequence. Finally, inserting this relation and (4.25) in (4.24)n we arrive 
at the validity of relation (4.22). 

As mentioned before, relations (4.21) and (4.22) imply relation (4.18). In other 
words, we have established the validity of inclusion (4.16). 

To derive I.emma 4.1 from this inclusion we note that for positive p, 

(4.27) ['A(I'2),Ma(w")] -- 2Ma(Dw~)D3 + Ma(D2w9 on ~)(A (1'2). 
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This relation together with inclusion (4.16) and definitions (4.1)land (2.1) yields 

Ma(1)"FO) Ma (w") = I Ao,2) M3(1)~M3(DwU)Da 

t 

Clearly, the commutator on the right equals, 

Mh, Dw" , o, 

These three equations together show that 

(4.30) Re { -  M (1)*[D2,M(w#)]} - M(Dw~] 2 
\%, I 

According to definition (4.2) 

(4.28) 1 _ / 1 \ "  ( ! )  
- ~M3~w) Ma(D2w ~') + 2I ® M + M(q). 

Definition (4.2) shows that for positive #, 

Inserting this fact in (4.28) we obtain that ~(d~6) is a core of this operator if we 
remember that it is a common core of A (1,2) and D 3 and that the last two terms in 
(4.28) are A(l'2)-bounded. This completes the proof of I_emma 4.1. 

The lemma that follows will imply that the sum of the second and third term 
in equation (4.28) is quasi accretive on ~ ( ~ 6 ) .  

LEMMA 4.2. Let the function w be defined by equation (4.2). Then for each 
positive number # 

(4.29) O <= {#2 - Re [M(1)~[D2,M(w~)]} on (~oo(81). 

To verify conclusion (4.29), we need the ~o(d'l) version of the commutator 
equation (4.27). This shows that 

Since the operators D and - D are adjoint to each other on ~ ( g l ) ,  on this set 
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Dw ~ . ~. 2~ 
w~ [¢)=it" 1 + dj 2' 

and hence 

( Dw ~ ~2 
sup (0  =#2. 

Insertion of this fact in equation (4.30) yields the validity of conclusion (4.29). 
This completes the proof of Lemma 4.2.. 

Now from these two lemmas we can easily derive that the ranges of the operators 
in Theorem 4.1 are closed. In the following 1emma we formulate this fact for 
future reference. 

LEMMA 4.3. Suppose that the real numbers 2 and It satisfy assumption (4.4) 
Then the ranges of the operators in (4.5)(1)'(2)are closed. 

Since 

[A 0,2), Ma(wp)] = [DaZ, M3(w.)]  ' 

we see from equations (4.28), (4.27) and definition (2.1) that 

1~' ( I )  1 _ l M 3  (lI~[D2,M3(w~)] M3(-~) (F - 2 ) M 3 ( w ~ ) = - ~ A ®  I 
d'w ~ V F /  

(4.28)~ + I ®(He + -  2) + M(q), on ~ ( ¢ 6 ) .  

According to assumption (4.4) 

#2 
~-- < inf it(He + - 2). 

It is a general operator-theoretic fact, that this implies 

It2 
7 < I ® (He + - 2). 

Similarly we see from conclusion (4.29) of Lemma 4.2 that 

0 < Re - f M 3  D 2,Ma(w")] + on ~ ( # 6 ) .  

Inserting these two inequalities in equation (4.28)a we obtain 

if we remember that the operator M(q) is positive and that the order of taking 
the real part of an operator and its quadratic form can be interchanged. 
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An operator satisfying relation (4.31) is called accretive on ~oo(86). It is well 
known [14.f] that if the operator T is accretive on any of its cores then for each 
positive number 8 the range of T +e is closed. We see from assumption (4.4) 
that to the number 2 there is a positive e such that 2 + e also satisfies this assump- 
tion, i.e., 

#2 
2~ + e < infa(He +) 2 " 

Aside from a minus sign, the operator in (4.5) (1) can be written as 

(~-) ~' (1)#(F(1) 8))Ma(w ~ ) 1 (F(t) 2)Ms(wz) = M  s (3~ + + ~. (4.32) M 3 - 

According to Lemma 4.1 ~(@6) is a core of the first term and according to (4.31) 
this operator is accretive on this set. Since by definition e is strictly positive these 
facts together with equation (4.32) establish the validity of Lemma 4.3. 

We complete the proof of Theorem 4.1 by showing that, under general circum- 
stances, this range is also dense. This is the statement of the lemma that follows. 
In it, for a given set ~ we denote by ~ its closure. 

LEMMA 4.4. Suppose that the real number ,~ is such that 

(4.33) 2 < inf tr(He+). 

Then, for  each positive number It, 

(4.34) (1)'(2) M 3 (-~-)~(2 - FC1)'t2))Ma(w ~) ~oo(86) = ~ 2 ( 8 6 ) .  

For brevity we shall verify only one of the conclusions, say (4.34) (1) Let &, 
denote the ball in 86 of radius r, i.e. set 

(x:lxl--- r, x eo . 

In analogy with previous notation we define the class ~oo(&,) and the space 
~2 (&,). For a given operator T we denote by T, the ~2(&r) closure of its re- 
striction to ~ ( ~ , ) .  It is implicit in this notation that this closure does exist 
which happens under general circumstances [14.c]. 

We maintain that the operator F~ 1) is essentially self-adjoint on ~ (&r ) .  For, 
according to a result of Kato [14.i], to each positive number e there is a number 
r(e) such that for every function f in 0;'oo(86), in particular in ~oo(~,), 

II(- =' ® M(}) " <=o llJ:"':ll 
the restriction of the operator - 21 ® M (11 + M(q) to ~oo(~,) is In other words, 

kr/ 
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1 (1,2 is bounded with reference to the restriction of the operator ~A to ~oo(&r). 

As is well known [10] the restriction of 2A(t'2) to ~o~(~,) is essentially self-adjoint 

in ~2(~r). According to a theorem of Rellich and Kato [14.g], these two facts 
together imply that the sum of these two operators is essentially self-adjoint on 
~oo(~,) in ~2(~,). At the same time it follows [14.g] that in this case, the closure 
of the sum equals the sum of the closure. Remembering definitions (4.1) (X)and 
(2.1) this establishes the essential self-adjointness of F~ t) on ~oo(~), as we have 
maintained. 

We see from this essential self-adjointness that the numerical range of F~ 1) 
is contained in the closure of the numerical range of its restriction ~®(~r). Since 
F (1) is essentially self-adjoint on ~ ( ~ 6 )  and ~ o ( ~ )  is a subset of ~o(86), we 
obtain that the closure of the numerical range of F~ 1) is contained in closure of 
the numerical range of F~ 1) . In symbols, 

(4.35) v(F: 1) c v(F(1)). 

It is an elementary consequence of the spectral theorem that the convex hull 
of the spectrum of a self-adjoint operator is closed and that it equals the closure 
of the numerical range. Applying this fact to the operator F (1) we obtain, 

(F (1)) c [infa(He+), co). 

Combining this inclusion with (4.35) yields 

v(F(, 1)) c [infa(ne+), ~).  

Since F~ 1) is self-adjoint, this in turn, yields 

a(F~ 1)) c [infa(He+), ~) .  

It is a general operator theoretic fact that 

a ( - 1 A ® I + I ® H e  + = inftr(He+),oo). 

This yields 
a(F (1)) c (infa(He+), oo), 

if we remember that M(q) is positive and definition (4.1) (1). Actually in this 
relation the inclusion sign can be replaced by the equality sign as Zhislin [7] has 
shown it. However, we shall not use this fact. All that we need is that assumption 
(4.33) implies that 

(4.36) ;t ~ p(F 0)) and 2 ~ p(F~l)). 

By definition ~oo(~r) is a core of F~ 1) and clearly the image of the core is dense 
in the range. Hence for every complex number ( we have 
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~ p(F~ 1)) implies (~ - F~t))~o(~,) = ~2(~,) 

According to relation (4.36) we can set ( = 2 in this implication, and we obtain 
that for each positive number r, 

(2 - FC1))~o(~,) = :$2(~,), 

if we remember that on ~(g~,)  the operators F °) and F, tl)are equal. It is clear 
from definition (4.2) that for each positive # 

= 

At the same time we see that for a given subset ~ of ~2(&r), 

(1), 
@ = I~2(~,) implies M3 ~ = ~2(~r). 

These three relations together show that for each positive/~ and r, 

/ \ 
Ma t-~-- ) (2 - F (~))Ma(w~)~oo(.~,) = ~2(&r). 

Remembering that ~ ( ~ , )  is a subset of ~ (d '6 )  we arrive at 

M 3 " ( 2 - F ° ) ) M a ( w " ) ~ ( ¢ 6 )  = U ~2(~,). 
r = 0  

Since the right member is dense in ~2(@6) this relation establishes the validity of 
conclusion (4.34) ~). A similar argument that we shall not carry out yields the 
validity of conclusion (4.34) C2). This completes the proof of Lemma 4.4. Clearly 
combining Lemmas 4.4 and 4.3 we obtain the validity of Theorem 4.1. 

We shall use this theorem via the following: 

COROLLARY 4.1. Let the function w be defined by equation (4.2) and let the 
operators F (1)(2) be defined by equations (4.1) °)C2). Then the binding energy 2 b 

1 
of definition (2.9) is such that for  Ig = O, ~, 1 we have 

To verify conclusion (4.38) recall relations (2.13) and (2.14) which show that 
for 2b and for these values of ~ assumption (4.4) holds. That is to say 

~2 1 
(4.39) /lb < infa(He +) - -~,  for  ~ = 0, ~, 1. 

Hence we see from Theorem 4.1 that for such # 
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(4.40) ~ M3,6 " ()~b -- FO)(2)) " M3,6(w~) ---- ~ 2 ( ° ~ 6 )  • 

We maintain that this operator is closed. For, we defined the second factor by 
closure, and hence it is closed. Remembering relations (2.13) and (4.37) we see 
that 

(4.41) (2b -- F O)(2))- 1 ~ ~(~z(¢6)). 

This fact together with the bondedness, in particular closedness of the operator 
M3(w ~') implies [14.b] that the product of the second and third factors in (4.40) 
is closed. Since for positive # 

we obtain that the triple product in (4.40) is also closed, as we have maintained. 
Clearly this triple product is one to one. Thus relation (4.40) allows us to apply 
a corollary [14.d] of the closed graph theorem, which yields 

1)" - 1 
(4.42) [Ma,6 (2b -- F(1)(2))Ma,6(wJ')] E~(~2(¢6)). 

An elementary algebra shows that 

(_~._f' (1)~'(~- F (,)(2))-, ~, M3, 6 (2 b - F(1)(2))M3,6(w•) • M3, 6 M3,6(w ) --- I 

1 " on ~(M3,6 (w) (~,b- F(1)(2))Ma,6(w~)) , 
and 

M 3 , 6 ( 1 )  ("~b-- F(1)(2))-1Ma,6(wP)" M3,6(-~ -) (~b- F(1)(2))M3,6(wp) = l 
1 p on ~)(Ma,6 (w) (,~b- F(1)(2))Ma,6(wl~)) 

These two equations together with relation (4.42) show that 

(4.43) M3,6 (~-)P ('~.b - F(1)(2)) - 1M3,6(wP ) E ~ ( , ~ 2 ( ~ ' ~ 6 ) ) .  

According to definition (4.2) for each positive/~ the function w" is bounded and 
hence 

~ (M3,6 (1)~) = M3,6(wU)~2(t~6). 

Inserting this equation in relation (4.43) we arrive at the validity of conclusion 
(4.38). This completes the proof of Corollary 4.1. 
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Finally we return to the proof of Theorem 2.1. We have already seen in §2 
that it suffices to verify condition (2.12). To verify this condition we first mainain 
that the assumptions of Lemma 3.2. hold for the pair of operators 

(4.44) (1) Ao (1)= F (1) and A (1)= - - 2 M  (1) ( 1 )  

with reference to the sets 

(4.45) (1) ~/1) = ~3 (M3 (1) ' /z) ,  I - 0 , 1 , 2 .  

For, we see from relation (4.41) and from relations (2.4) and (2.5) ¢1) that 

M(t)(~)(2t,- F(x)) -1 e~(,~2(,~6)). 

That is to say assumption (3.10) holds at the point 2b. The validity of assumption 
(3.12)~, l = 0, 1, 2, is the statement of Corollary 4.1. To see the validity of assump- 
tions (3.11)~, assume that 

Then it can be written in the form 

where 

Since 

[ 1 \ . 2  
f(x) = ~ ~ I ' g(x), 

\ -  - - - - 3 /  

1 
f (x~ + x~z + x~ 

+ 1)[g(x)l~dx < oo. 

2 2 ' 
1+ < + + 

x~ + x~ + x~ = 2 

we see from the previous estimate that 

f 1 + x 2 x~ I g(x) lZd x < oo. 

From this, in turn, we see that setting 

h(x) = + + x y  g(x), 

we have 

2 2 x~ + x2 + x3 > l , 
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x~ + x l +  x l]  f ( x )  = h(x) 

and 

(4.47) (1) 

we have 

(4.48) (1) 

and 

(4.49) (1) 

f lh(x)[ ' -dx < oo.  

(1) (r) ~0) That is to say relation (4.46) implies that M f is in -,-,t+l and assumption 

(3.11)t holds. Thus we seen from Lemma 3.2 that setting 

~k (11 = I"] ~3 k = 0,1,2, 

= c o  " )  

~(1) k = 0, 1, 2 (2b - H e  + E{2b})- '~k (1) '- ~ k ,  

A similar argument, that we shall not carry out, shows that Lemma 3.2 applies 
to the pair of operators 

(4.44) (2) A(o 2) == F (2) and A(o 2) = - 2 M  (2) ( ~ ) ,  

with reference to the sets 

[ / 1 \t12 \ 

Thus we see from Lemma 3.2 that setting 

~k~2)= (7  ~3 0 , k = 0 , 1 , 2 ,  
1=0 

(4.47) (2) 

we have 

(4.48) (2) 

and 

(4.49) (2) 

= 2), 

(~b - H e  + E{2b})-'~(k 2) c ~(2), k = 0,1,2. 

Relations (4.47) (1), (4.48) (1), (4.49) (1) and (4.47) (2), (4.48)(2,) (4.49)(2)together 
show that setting 

(4.47) ~k = ~(i~ N ~(2) k = 0, 1, 2 

we have 
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(4.48) 

and 

(4.49) 

P. A. REJTO 

E(~,b},~2(~:~6) C 60 ,  

Israel J. Math., 

(2 b - He + E{2b})- 16k ~ 6k, k = 0, 1,2. 

In other words, at the point 2b the operator He satisfies assumptions (3.6) and 
(3.8)k of Lemma 3.1 with reference to the sets of definition (4.47). 

Finally we maintain that the sets of definition (4.47) satisfy assumptions (3.7)k 
of Lemma 3.1 with reference to the perturbation V of definition (2.7). For, suppose 
t h a t f  is in 60, which in view of definitions (4.47), (4.47) (1), (4.47) (2) and (4.2) 
means that 

(4.50) 

Since 

we see that 

f I(1 ÷ ÷ (1 ÷ If(x)I dx < l = 0 , 1 , 2 .  

(x3 + x6) 2 < 4max (x~, x~), 

(xa + x6)2[( I+ x32) ' + ( I  + x62) ̀] =< 8 [ ( I+  x2) '+ '  + ( I  + x2) '+' ] .  

Insertion of this inequality in assumption (4.50) yields 

f (xa + x6)2[(1 + + (1 + ]f(x)12dx < 0% for = O, X2) l X2) l] l 1. 

Remembering definitions (2.7), (4.47) and (4.2) this estimate says that Vfis in 61. 
Thus 

V6o c 61,  

and we see similarly that 

V6k c 6k+x for k = 0,1,. 

That is to say, assumptions (3.7)k hold as we have mainained. 
Therefore we can conclude from Lemma 3.1 that the first two formal pertur- 

bation equations corresponding to the family H(e) of definition (2.8) do admit 
solutions. In other words we have established the validity of condition (2.12). 
This completes the proof of Theorem 2.1. 
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